International Journal of Applied Mathematics & Statistical Sciences (IJAMSS) ISSN 2319-3972 Vol. 2, Issue 2, May 2013, 55-64 © IASET

****B-T-SETS IN TOPOLOGICAL SPACES**

K. REKHA¹ & T. INDIRA²

¹Department of Mathematics, Bishop Heber College, Tiruchirappalli, Tamilnadu, India ²Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli, Tamilnadu, India

ABSTRACT

In this paper, we introduce **b-t-sets, **b-t*-sets, **b-B-sets, **b-B*-sets, **b-semi open sets, **b-pre open sets and discuss some properties of the above sets.

KEYWORDS: **b-open sets, B-sets, B*-sets, t-sets, t*-sets

2000 Mathematical Subject Classification: 54A05, 54D05

INTRODUCTION

Levine [9] introduced the notion of semi open sets and semi-continuity in topological spaces. Andrijevic [3] introduced a class of generalized open sets in topological spaces. Mashhour [10] introduced pre open sets in topological spaces. The class of b-open sets is contained in the class of semi open and pre open sets. Tong [13] introduced the concept of t-set and B-set in topological spaces. The class of *b-open sets is both semi-open and pre open. The class of **b-open sets is both α -open and β -open. Indira, Rekha [6] introduced the concept of *b-open set, **b-open set, t*-set and B*-set in topological spaces. In this paper we introduce the notion of **b-t-set, **b-t*-set, **b-B-set, **b-B*-set, **b-semi open and **b-pre open. All throughout this paper (X, τ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let A = X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

PRELIMINARIES

Definition 2.1: A subset A of a space X is said to be:

- Semi open [9] if $A \subseteq Cl(Int(A))$
- Pre open [10] if $A \subseteq Int(Cl(A))$
- b-open [3] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$
- *b-open [6] if $A \subseteq Cl(Int(A)) \cap Int(Cl(A))$
- b^{**} -open [4] if $A \subseteq Int(Cl(Int(A))) \cup Cl(Int(Cl(A)))$
- **b-open [6] if $A \subseteq Int(Cl(Int(A))) \cap Cl(Int(Cl(A)))$

Lemma 2.2. [1,4,6] If A is a subset of a space (X, τ) , then

- $sInt(A) = A \cap Cl(Int(A))$
- $pInt(A) = A \cap Int(Cl(A))$
- b^{**} Int(A) = α Int(A) $\cup \beta$ Int(A)
- **bInt(A) = α Int(A) $\cap \beta$ Int(A)

Definition 2.3: A subset A of a space X is called:

- t-set [**13**] if Int(A) = Int(Cl(A)).
- B-set [13] if $A = U \cap V$, where $U \in \tau$ and V is a t-set.
- t*-set [6] if Cl(A) = Cl(Int(A)).
- B^* -set [6] if $A = U \cap V$, where $U \in \tau$ and V is a t*-set.

Definition 2.4: A subset A of a space X is called [1]:

- b-t-set if Int(A)=Int(bCl(A))
- $b-t^*-set \text{ if } Cl(A) = Cl(bInt(A)).$
- b-B-set if $A=U\cap V$, where $U \in \tau$ and V is a b-t-set
- b-B*-set if A=U \cap V, where U $\in \tau$ and V is a b-t*-set
- b-semi open if $A \subseteq Cl(bInt(A))$
- b-pre open if $A \subseteq Int(bCl(A))$

GENERALIZED **B-CLOSED SETS

Definition 3.1: Let X be a space. A subset A of X is called a generalized **b-closed set if $**bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Example 3.2: Let X= $\{a,b,c,d\}$ and $\mathcal{T} = \{X, \phi, \{c\}, \{d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}\}$

The collection of generalized **b-closed sets ={X, ϕ , {a}, {b}, {a,b,c}, {a,b,d}}

Definition 3.3: The complement of a generalized **b-closed set is called generalized **b-open set.

From the example 3.2, The collection of generalized **b-open sets= $\{X, \phi, \{b, c, d\}, \{c, d\},$

Theorem 3.4: For a subset A of a space(X, τ), the following are equivalent:

- A is **b-closed
- A is g-**b-closed and locally **b-closed.

Proof

To prove: $(1) \Rightarrow (2)$

Let A be **b-closed. Then $A=A\cap X$ where A is **b-closed and X is open. Therefore A is locally **b-closed.

To Prove: A is generalized **b- closed.

Let $A \subseteq U$ and U is open. Then **bCl(A) $\subseteq U$ [since A is **b-closed]. Therefore A is generalized **b- closed.

To prove: $(2) \Rightarrow (1)$

Let A be locally **b-closed and generalized **b-closed.

To Prove: A is **b-closed.

Since A is locally **b-closed. Therefore, there exist an open set U such that $A = U \cap **bCl(A)$ (1)

 $\Rightarrow A \subseteq U \text{ and } A \subseteq **bCl(A)$ (2)

 $\Rightarrow **bCl(A) \subseteq U$

 \Rightarrow **bCl(A) \subseteq U \cap **bCl(A) = A [From(1)]. Therefore **bCl(A) \subseteq A. Hence A is **b-closed.

**B-T-SETS

Definition 4.1: A subset A of a space X is called:

- **b-t-set if Int(A)=Int(**bCl(A))
- **b-t*-set if Cl(A)=Cl(**bInt(A))
- **b-B-set if A=U \cap V, where U $\in \tau$ and V is a **b-t-set
- **b-B*-set if A=U \cap V, where U $\in \tau$ and V is a **b-t*-set
- **b-semi open if $A \subseteq Cl(**bInt(A))$
- **b-pre open if $A \subseteq Int(**bCl(A))$

Example 4.2: Let X={a,b,c,d} and $T = \{X, \phi, \{c\}, \{d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}\}$

The collection of **b-open sets ={X, ϕ , {c}, {d}, {c,d}, {a,c,d}, {b,c,d}}

The collection of **b-closed sets ={X, ϕ , {a,b,d}, {a,b,c}, {a,b}, {b}, {a}}

The collection of **b-t-sets ={X, ϕ , {a}, {b}, {c}, {d}, {a,c}, {b,c}, {b,d}, {a,b,c}, {a,b,d}}

The collection of **b-t*-sets ={X, ϕ , {c}, {d}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,c,d}, {a,b,d}, {b,c,d}}

The collection of **b-B-sets ={X, ϕ , {a}, {b}, {c}, {d}, {a,b},

 $\{a,c\},\{a,d\},\{b,c\},\{b,d\},\{c,d\},\{a,b,c\},\{a,c,d\},\{a,b,d\},\{b,c,d\}\}$

The collection of **b-B*-sets ={X, ϕ , {c}, {d}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,c,d}, {a,b,d}, {b,c,d}}

The collection of **b-semi open sets ={X, ϕ , {c}, {d}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}, {a,c,d}, {a,b,d}, {b,c,d}}

The collection of **b-pre open sets ={X, ϕ , {c}, {d}, {c,d}, {a,c,d}, {b,c,d}}

Results 4.3

- Every **b-closed set is a **b-t-set.
- Every **b-open set is a **b-t*-set.
- Every open set is a **b-pre open set.

Example 4.4: From the example 4.2,

- {d} is a **b-t-set, but not a **b-closed set.
- {a,c} is a **b-t*-set, but not a **b-open set.

(2)

Definition 4.5: The complement of a **b-semi open (**b-pre open) set is called a **b-semi closed (**b-pre closed) set. From the example 4.2,

The collection of **b-semi closed sets ={X, ϕ , {a,b,d}, {a,b,c}, {b,d}, {b,c}, {a,d}, {a,c}, {a,b}, {b}, {c}, {a}}

The collection of **b-pre closed sets ={X, ϕ , {a,b,d}, {a,b,c}, {a,b}, {b}, {a}}

Note 4.6

S(**bCl(A)) is the intersection of all **b-semi closed sets containing A.

S(**bInt(A)) is the union of all **b-semi open sets contained in A.

- **Theorem 4.7:** For subsets A and B of a space (X, τ) , the following properties hold:
 - A is a **b-t*-set iff it is **b-semi open.
 - If A and B are **b-t*-sets, then $A \cup B$ is a **b-t*-set.

Proof

• Let A be a **b-t*-set.

Then Cl(A)=Cl(**bInt(A)). Therefore $A \subseteq Cl(**bInt(A))$. Hence A is **b-semi open.

Conversly, If A is **b-semi open.

Then $A \subseteq Cl(**bInt(A)), Cl(A) \subseteq Cl(**bInt(A))$ (1)

Since $Cl(**bInt(A)) \subseteq Cl(A)$

Hence A is a **b-t*-set.

• Let A and B be **b-t*-sets.

Since **bInt($A \cup B$) \subseteq ($A \cup B$)

 $Cl(**bInt(A \cup B)) \subseteq Cl(A \cup B)$ (1)

 $Cl(**bInt(A \cup B)) \supset Cl(**bInt(A) \cup **bInt(B)) = Cl(A) \cup Cl(B) = Cl(A \cup B)$ (2)

From (1) & (2), Cl($**bInt(A \cup B)$) = Cl(A \cup B). Hence A \cup B is a **b-t*-set.

Theorem 4.8: For subsets A and B of a space (X, τ) , the following properties hold:

- A is a **b-t-set if and only if it is **b-semi closed.
- If A is **b-closed, then it is a **b-t-set.
- If A and B are **b-t-sets, then $A \cap B$ is a **b-t-set.

Proof

• Let A be a **b-t-set. Therefore $Int(**bCl(A)) \subseteq Int(A)$

 $Int(**bCl(A)) \subseteq A.Hence A is **b-semi closed.$

Conversly, If A is **b-semi closed.

$$\text{Then Int}(**bCl(A)) \subseteq A \Rightarrow \text{Int}(\text{Int}(**bCl(A))) \subseteq \text{Int}(A) \Rightarrow \text{Int}(**bCl(A)) \subseteq \text{Int}(A)$$
(1)

Since
$$Int(A) \subseteq Int(**bCl(A))$$
 (2)

From (1) & (2), $Int(A)=Int(**bCl(A)) \Rightarrow A \text{ is a }**b-t-set.$

- Let A be a **b-closed set. Then $A = **bCl(A) \Rightarrow Int(A) = Int(**bCl(A)) \Rightarrow A is a **b-t-set.$
- Let A and B be **b-t-sets. Since $A \cap B \subseteq **bCl(A \cap B)$

$$\Rightarrow Int(A \cap B) \subseteq Int(**bCl(A \cap B)) \tag{1}$$

$$Int(**bCl(A \cap B)) \subseteq Int(**bCl(A) \cap **bCl(B)) = Int(A) \cap Int(B) = Int(A \cap B)$$
(2)

From (1) & (2),
$$Int(A \cap B) = Int(**bCl(A \cap B)) \implies A \cap B$$
 is a **b-t-set.

Theorem 4.9: For a subset A of a space (X, τ) , the following properties hold:

- If A is t-set then it is **b-t-set.
- If A is **b-t-set then it is **b-B-set.
- If A is B-set then it is **b-B-set.

Proof

• Let A be a t-set. Then $Int(A)=Int(Cl(A)) \Rightarrow A$ is closed.

Since every closed set is **b-closed. \Rightarrow Int(A)=Int(**bCl(A)). Hence A is a **b-t-set.

- Let A be a **b-t-set. Let U ∈ τ be an open set containing A & V=A be a **b-t-set containing A. ⇒ A=U∩V ⇒ A is a **b-B-set.
- Let A be a B-set. Then A=U∩V where U∈ τ and V is a t-set. Since every t-set is a **b-t-set.
 ⇒ A is a **b-B-set.

Theorem 4.10: For a subset A of a space (X, τ) , the following properties hold:

- If A is a t*-set then it is **b-t*-set.
- If A is a **b-t*-set then it is **b-B*-set.
- If A is a B*-set then it is **b-B*-set.

Proof

• Let A be a t*-set. Then Cl(A)=Cl(Int(A)). \Rightarrow A is open.

Since every open set is **b-open. \Rightarrow Cl(A)=Cl(**bInt(A)) \Rightarrow A is a **b-t*-set.

- Let A be a **b-t*-set. Let U ∈ τ be an open set containing A&V=A be a **b-t*-set containing A. ⇒ A=U∩V ⇒ A is a **b-B*-set.
- Let A be a B*-set. Then A=U \cap V where U $\in \tau$ and V is a t*-set

Since every t*-set is a **b-t*-set. Hence A is a **b-B*-set.

Theorem 4.11: For a subset A of a space (X, τ) , the following are equivalent:

- A is open.
- A is **b-pre open and a **b-B-set.

Proof

To Prove: $(1) \Rightarrow (2)$

Let A be open. \Rightarrow A =Int(A). Since A \subseteq **bCl(A) \Rightarrow A \subseteq Int(**bCl(A) \Rightarrow A is **b-pre open.

Let $U=A \in \tau$ and V=X be a **b-t-set containing A. $\Rightarrow A=U \cap V \Rightarrow A$ is a **b-B-set.

To Prove: $(2) \Rightarrow (1)$

Let A be **b-pre open and a **b-B-set. Since A is **b-B-set.

We have $A=U\cap V$, where U is an open set and Int(V)=Int(**bCl(V))

Since A is also **b-pre open.

 \Rightarrow A \subseteq Int(**bCl(A)) = Int(**bCl(U \cap V))

 $\subset Int(**bCl(U) \cap **bCl(V)) = Int(**bCl(U)) \cap Int(**bCl(V))$

= Int(**bCl(U)) \cap Int(V)

Therefore $A = U \cap V \subset Int(**bCl(U)) \cap Int(V)$

Consider $U \cap V = (U \cap V) \cap U \subset [Int(**bCl(U)) \cap Int(V)] \cap U = [Int(**bCl(U)) \cap U] \cap Int(V) = U \cap Int(V)$

 \Rightarrow U \cap V \cap U \cap Int(V). Therefore A=U \cap V = U \cap Int(V) \Rightarrow A is open.

Lemma 4.12: Let A be an open subset of a space X.

Then **bCl(A) = Cl(A) and Int(**bCl(A)) = Int(Cl(A)).

Proof

Let A be an open set. Then A = Int(A)

** $bCl(A) = \alpha Cl(A) \cup \beta Cl(A)$

$$= [A \cup Cl(Int(Cl(A)))] \cup [A \cup Int(Cl(Int(A)))] = A \cup [Cl(Int(Cl(A))) \cup Int(Cl(Int(A)))]$$

 $= A \cup [Int(Cl(A)) \cup Cl(Int(Cl(A)))]$

$$= A \cup Cl(Int(Cl(A))) \subset A \cup Cl(Cl(Cl(A)))[::Int(Cl(A)) \subset Cl(Cl(A))]$$

 $\subset A \cup Cl(A) = Cl(A) \Longrightarrow **bCl(A) \subset Cl(A)$

 $:: Cl(A) \subset **bCl(A) \Longrightarrow **bCl(A) = Cl(A)$

 \Rightarrow *Int*(***bCl*(*A*)) = *Int*(*Cl*(*A*))

Proposition 4.13: For a subset A of a space (X, τ) , the following are equivalent:

- A is regular open.
- A = Int(**bCl(A))
- *A* is **b-pre open and a **b-t-set.

Proof

To prove: (1) \Longrightarrow (2)	
Let A be regular open. $\Rightarrow A = Int(Cl(A))$	(1)
By lemma 4.12, $**bCl(A) = Cl(A) \Rightarrow Int(**bCl(A)) = Int(Cl(A))$	
$\Rightarrow Int(**bCl(A)) = A [From (1)] \Rightarrow A = Int(**bCl(A))$	
To prove: (2) \Longrightarrow (3)	
Given $A = Int(**bCl(A))$	(2)
$\Rightarrow A \subseteq Int(**bCl(A)) \& Int(**bCl(A)) \subseteq A \Rightarrow A \text{ is } **b\text{-pre open.}$	
From(2),	
$Int(A) = Int(Int(**bCl(A))) \Longrightarrow Int(A) = Int(**bCl(A))$	
\Rightarrow A is a **b-t-set.	
To prove: (3) \Longrightarrow (1)	
Let A be **b-pre open and a **b-t-set. Since A is **b-pre open.	
$\Rightarrow A \subseteq Int(**bCl(A))$	(3)
Since A is a **b-t-set. \Rightarrow Int(A) = Int(**bCl(A))	(4)
From (3) & (4), $A \subseteq Int(**bCl(A)) = Int(A) \subseteq A \implies A \subseteq Int(**bCl(A)) \subseteq A$	
$\Rightarrow A = Int(**bCl(A))$	

 $\Rightarrow A = Int(Cl(A))$ [Since A is open]

 \Rightarrow A is regular open.

Definition 4.14: A subset *A* of a topological space X is called s-**b-generalized closed if $s(**bCl(A)) \subseteq U$

Whenever $A \subseteq U$ and U is **b-pre open.

• s(**bCl(A)) is the intersection of all **b-semi closed sets containing A.

Example 4.15

Let $X = \{a, b, c, d\}$

$$\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{\{b, c, d\}\}\}$$

The collection of s-**b-generalized closed sets =

$${X,\phi,{a},{b},{c},{a,b},{a,c},{a,d},{b,c},{b,d},{a,b,c},{a,b,d}}$$

Theorem 4.16: For a subset A of a topological space X, the following are equivalent:

- A is regular open.
- *A* is **b-pre open and s-**b-generalized.

Proof

To prove:
$$(1) \Longrightarrow (2)$$

Let A be regular open.

 \Rightarrow A is **b-pre open [By Proposition 4.13]

$$\Rightarrow A \subseteq Int(**bCl(A))$$

 $s(**bCl(A)) = A \cup Int(**bCl(A))$

$$= Int(**bCl(A))$$

= Int(Cl(A)) = A [:: A is regular open]

$$\Rightarrow s(**bCl(A)) = A$$

 \Rightarrow A is s-**b-generalized closed.

To prove:
$$(2) \Longrightarrow (1)$$

Let A be **b-pre open and s-**b-generalized closed.

To prove: A is regular open.

Since A is **b-pre open.

Let
$$U = A$$

 $\Rightarrow s(**bCl(A)) \subseteq A$
(1)

Since
$$A \subseteq s(**bCl(A))$$
 (2)

From (1) & (2)

A = s(**bCl(A))

 \Rightarrow A is **b-semi closed. Therefore $Int(**bCl(A)) \subset A$ (3)Since *A* is **b-pre open. $\Rightarrow A \subset Int(**bCl(A))$ (4) From (3) & (4) A = Int(**bCl(A))

 \Rightarrow A is regular open.

Theorem 4.17: A set A is a **b-t-set iff its complement is a **b-t*-set.

Proof

Let A be a **b-t-set. Then Int(A)=Int(**bCl(A))

 \Leftrightarrow X-Int(A)=X-Int(**bCl(A))

 \Leftrightarrow Cl(X-A)=Cl(X-**bCl(A))

 \Leftrightarrow Cl(X-A)=Cl(**bInt(X-A))

 \Leftrightarrow Cl(A^c)=Cl(**bInt(A^c))

 $\Leftrightarrow A^c$ is a **b-t*-set.

REFERENCES

- 1. Ahmad Al-Omari and Mohd. Salmi Md. Noorani, Decomposition of continuity via b-open set, Bcl. Soc. Paran. Mat.(3s) v. 26 (1-2)(2008): 53-64.
- 2. D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1) (1986), pp. 24-32.
- 3. D. Andrijevic, On b-open sets, Mat. Vesnik., 48(1-2) (1996), 59-64.
- 4. S. Bharathi, K. Bhuvaneshwari, N. Chandramathi, On locally b**-closed sets, International journal of mathematical sciences and Applications. Vol. 1 No. 2 (2011), 636-641.
- 5. J.Dontchev and M.Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungary, 71(1-2)(1996), 109-120.
- 6. T.Indira., K.Rekha., On locally **b-closed sets, Proceedings of the Heber International Conference on Applications of Mathematics & Statistics(HICAMS 2012), 74-80 ISBN No: 978-93-81361-71-9
- 7. T.Indira and K. Rekha, *b-t-sets in topological spaces, Antarctica journal of Mathematics, Vol. 9 No.7 (2012), 599-605.
- 8. T.Indira and K.Rekha, Applications of *b-open sets and **b-open sets in Topological spaces, Annals of pure and applied mathematics, Vol.1, No.1, (44-56)2012, ISSN: 2279-087X (P),2279-0888.

- N. Levine, Semi- open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41 MR0166752(29#4025).
- A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak precontinuous functions, Proc Math Phys Soc Egypt 53(1982), 47-53.
- 11. K. Rekha and T. Indira, Decomposition of continuity via *b-open set, communicated (2012).
- 12. K. Rekha and T. Indira, b**-t-sets in topological spaces, communicated (2013).
- 13. J.Tong, On Decomposition of continuity in topological spaces, Acta Math. Hungar. 54(1-2)(1989), 51-55.